Mathematical Physics (Notes)

Contents

  • Chapter 1: Mathematical Preliminaries
    • 1.1 Infinite Series
    • 1.2 Series of Functions
    • 1.3 Binomial Theorem
    • 1.4 Mathematical Induction
    • 1.5 Operations on Series Expansion of Functions
    • 1.6 Some Important Series
    • 1.7 Vectors
    • 1.8 Complex Numbers and Functions
    • 1.9 Derivatives and Extrema
    • 1.10 Evaluation of Integrals
    • 1.11 Dirac Delta Function
  • Chapter 2: Determinants and Matrices
  • Chapter 3: Vector Analysis
  • Chapter 4: Tensors and Differential Forms
  • Chapter 5: Vector Spaces
  • Chapter 6: Eigenvalue Problems
  • Chapter 7: Ordinary Differential Equations
    • 7.1 Introduction
    • 7.2 First-Order Equations
    • 7.3 ODEs with Constant Coefficient
    • 7.4 Second-Order Linear ODEs
    • 7.5 Series Solutions - Frobenius Method
    • 7.6 Other Solutions
    • 7.7 Inhomogeneous Linear ODEs
    • 7.8 Nonlinear Differential Equation
  • Chapter 8: Sturm-Liouville Theory
  • Chapter 9: Partial Differential Equation
  • Chapter 10: Green's Functions
  • Chapter 11: Complex Variable Theory
  • Chapter 12: Further Topics in Analysis
  • Chapter 13: Gamma Function
  • Chapter 14: Bessel Functions
  • Chapter 15: Legendre Functions
  • Chapter 16: Angular Momentum
  • Chapter 17: Group Theory
    • 17.1 Introduction to Group Theory
    • 17.2 Representation of Groups
    • 17.3 Symmetry and Physics
    • 17.4 Discrete Groups
    • 17.5 Direct Products
    • 17.6 Symmetric Group
    • 17.7 Continuous Group
    • 17.8 Lorentz Group
    • 17.9 Lorentz Covariance of Maxwell's Equations
    • 17.10 Space Groups
  • Chapter 18: More Special Function
  • Chapter 19: Fourier Series
  • Chapter 20: Integral TransformIn
  • Chapter 21: Integral Equations
  • Chapter 22: Calculus of Variations
  • Chapter 23: Probability and Statistics